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History of GFDL Computing

Courtesy V. Ramaswamy, NOAA/GFDL.
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Moore’s Law and End of Dennard scaling

Figure courtesy Moore 2011: Data processing in exascale-class
systems.

Processor concurrency: Intel Xeon-Phi.
Fine-grained thread concurrency: Nvidia GPU.
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Deep Learning

From Edwards (2018), ACM.
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https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext
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NGGPS: Next-Generation Global Prediction System

FV3 dynamical core from GFDL for the next-generation forecast model
(target: 3 km non-hydrostatic in 10 years running at ∼ 200 d/d)
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Passing the climate Turing test?

We may be able to simulate everything in great detail, but do we
understand how it works?
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The model hierarchy

Molecular biology uses a hierarchy of “models”: E. Coli, C.
Elegans, fruit fly, mouse, H. Sapiens, ...
We have a similar hierarchy: LES, CRM, AOGCM, ESM, ...
and a hierarchy of idealized experiments: turbulent flow,
radiative-convective equilibrium, aquaplanet, AMIP, OMIP, control,
historical, ...
Community must run common experiments at all levels of the
hierarchy (“idealized MIPs”)...
“Verification” (or falsification) of idealized planet Earth? analysis
must isolate underlying mechanisms even in complex models.

Adapted from Held (2005, 2014). Model Hierarchies Workshop,
November 2016 in Princeton.
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https://www.wcrp-climate.org/gc-model-hierarchies-agenda


Model calibration

Model calibration or “tuning” consists of reducing overall model bias
(usually relative to 20th century climatology) by modifying parameters.
In principle, minimizing some cost function:

C(p1,p2, ...) =
N∑
1

ωi‖φi − φobs
i ‖

Usually the p must be chosen within some observed or theoretical
range pmin ≤ p ≤ pmax .
“Fudge factors” (applying known wrong values) generally frowned
upon (see Shackley et al 1999 discussion on history of “flux
adjustments”. More on that later...)
The choice of ωi is part of the lab’s “culture”!
The choice of φobs

i is also troublesome:
overlap between “tuning” metrics and “evaluation” metrics.
“Over-tuning”: remember “reality” is but one ensemble member!
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Objective methods of tuning

Neelin et al (2010) construct “metamodels” to aid in multi-parameter
optimization. See also Zamboni et al.
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Model-free prediction vs model augmentation

From Pathak et al, PRL (2018), Model-Free Prediction of Large
Spatiotemporally Chaotic Systems from Data: A Reservoir Computing
Approach
Movie: Pathak’s flame front in Quanta.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.024102
https://www.quantamagazine.org/machine-learnings-amazing-ability-to-predict-chaos-20180418/


Making ML respect known physical constraints

See momentum conservation discussion in Bolton and Zanna (2018),
Applications of Deep Learning to Ocean Data Inference and Sub-Grid
Parameterisation.

From Ling et al, JCP (2016), Machine learning strategies for systems
with invariance properties
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https://www-sciencedirect-com/science/article/pii/S0021999116301309


Distilling Free-Form Natural Laws from Experimental
Data

From Schmidt and Lipson, Science, 2009. My little hommage, Gaitán
et al (2016), Can we obtain viable alternatives to Manning’s equation
using genetic programming? Eureqa software available under license.
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http://science.sciencemag.org/content/324/5923/81
http://www.sciedupress.com/journal/index.php/air/article/view/9305
http://www.sciedupress.com/journal/index.php/air/article/view/9305


Navier-Stokes from data

From Rudy et al (2017).
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http://advances.sciencemag.org/content/3/4/e1602614


Limitations of training data

From O’Gorman and Dwyer, JAMES, 2018. Limitations of training on
short non-stationary time series.
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001351


Error patterns associated with stationarity assumption

Errors can be traced with warming outside the temperature distribution
of the training period. Caution needed at distribution tails (“extreme
events”). Dixon et al (2016).
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Where models and data are both weak...

Fig 1 from Valdes (2011). GCMs are unable to simulate the
Paleocene-Eocene climate of 55 My ago.
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Questions: metamodels and supermodels

Supermodels: some components replaced by learning agents.
Metamodels: low-dimensional emulators, “fast approximate
models”.
Fundamental questions still unanswered:

Are model-free methods useful?
How do we derive the invariant basis of a complex system?
Can we use ML to derive the functional form of a slow manifold?
Can we derive a useful model hierarchy?
Can this metamodel be used for parameter uncertainty exploration?
How much physical knowledge (e.g conservation laws) must be
embedded in the ML? What if the embedded knowledge is
incorrect? (“It’s not what you don’t know, it’s what you know for sure
that just ain’t so”, Mark Twain never said.)
What happens to supermodels as the features of the training data
evolve?
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Learn parameterizations from observations

(Courtesy: S-J Lin, NOAA/GFDL).
(Courtesy: D. Randall, CSU;
CMMAP).

Global-scale CRMs (e.g 7 km simulation on the left) and even
super-parameterization using embedded cloud models (right)
remain prohibitively expensive.
Can we learn the statistical aggregate of small scales? See
Schneider et al 2017, Gentine et al (2018), O’Gorman and Dwyer
(2018), Bolton and Zanna (2018), ...
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351


Learning sub-gridscale turbulence

Fig 1 from Bolton and Zanna (2018), in review for JAMES.
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Caltech/MIT Earth Machine

From Schneider et al 2017.
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html


Lorenz 96, a nice abstraction

dXk

dt
= −Xk−1(Xk−2 − Xk+1)− Xk + F − hc

b

32∑
j=1

Yj,k + f (1)

dYj,k

dt
= −cbYj+1,l(Yj+2,k − Yj−1,k )− cYj,k +

hc
b

Xk (2)

A nice abstraction of a system with fast and slow modes, whose
coupling strength can be varied... maybe too interesting? See
metastability issues in Schneider et al, GRL (2017).
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https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL076101


Lorenz96 in perfect model setting

From Schneider et al 2017. Learn Lorenz96 parameters F ,h, c,b from
prior run.
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html


Project Hermès: Strategy

Project Hermès will study learning methods for metamodels and
supermodels, for atmosphere and ocean, across a hierarchy of
models (e.g 1D and 3D, idealized, LES, GCM, ...)
Project Hermès will aim to foster collaboration in the emerging
field of Climate/ML: between the ML and climate communities,
theoretical and applied science, between institutions in EU/US/...
Project Hermès will aim to build a community of interdiscplinary
scientists equally at home in machine learning and Earth System
science.
Project Hermès will aim to be open-minded and opportunistic: this
is a nascent field and there will be unexpected twists and turns!
All work will be shared with the community via articles in
open-access journals, open-source software, open data. No
commercial or proprietary interests. Articles will list LSCE
affiliation first and acknowledge MOPGA funding.
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Collaborations beginning under Project Hermès

Initial presentations:

Presentation of the ML challenge to the community: IPSL (Dec
2018), LSCE (Jan 2019).

Beginning collaborations:

Extension of Bolton-Zanna approach using high-resolution ocean
models

In collaboration with LOCEAN, Uni Grenoble, Oxford, Princeton
MOPGA postdoc (LSCE) under recruitment.

Application of ML to model calibration
In collaboration with LMD, Univ Exeter, École Normale Supérieure,
ANR High Tunes project.
Doctoral student (ENS) under recruitment.

Detection of features (e.g tropical cyclones) in high-resolution
climate data.

In collaboration with IPSL.
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Proposed timeline

Year 1:
Recruitment for subprojects (see above).
Monthly Journal Club starting Feb 2019.
Presentation of the Climate/ML challenge to the community: IPSL
(Dec 2018), LSCE (Jan 2019), SAMA IA-Climat (Feb 2019).
Invited presentation at LEFE/MANU Journée Thematique à Rennes
(Feb 2019)
Invited keynote presentation at EGU Assembly Vienna (April 2019).
Articles in preparation:

Metamodels and supermodels: ideas and challenges from machine
learning in Earth System Science.
The biology analogy: will in silico science become like in vitro?

Year 3:
Demonstration of supermodeling approach in at least one aspect of
IPSL model.
Demonstration of ML application in calibration of IPSL model.

Year 5:
Hybrid (ML/physics-based) model in production.
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