
Make Our Planet Great Again.

Annual rapport on Post-Doctoral research by Anna Sommer.
Period: 09/05/2019-31/12/2019.
Employer: CEA/LSCE/LOCEAN.

Title of the project: 
Improvement of mesoscale processes representation in ocean models using Machine Learning
techniques.

Introduction and motivation.

The role of mesoscale eddies is crucial for ocean circulation and its energy budget. At scales
of  10  to  300  km,  the  mesoscale  eddies  transfer  hydrographic  properties  and  energy  at
different spatial  and temporal scales, hence contributing to equilibrating large scale ocean
dynamics and thermodynamics, which is paramount for long-term climate modelling [Olbers
et  al.,  2012].  They  also  affect  biogeochemical  tracers,  which  in  return  influence  ocean
thermodynamics  (through  light  penetration),  climate  and  ecosystems,  hence  representing
correctly their effect in ocean models is of greatest importance. 
Running long term climate simulations, to achieve quasi-steady equilibrium, still impedes to
use  coarse  resolution  ocean models  that  do not  represent  explicitly  mesoscale  processes.
Indeed, higher-resolution ocean models (so called eddy-permitting) not only require a lot of
computing resources (CPU time and storage) but also neglect Reynolds constraints on eddy
Reynolds stress, and require a high viscosity and dissipation to maintain numerical stability
[Zanna et al., 2017].
Thus, it is important to better represent mesoscale processes in ocean models with a lower
computational cost.
Machine  learning (ML),  and in  particular  deep learning,  have  great  potential  for  solving
problems such as classification, processing and reconstruction of large amounts of data (Big
Data). By extracting the information from the existing data, this approach makes it possible to
reconstruct the information in regions where the data availability is mediocre and at different
spatio-temporal scales.
The important mesoscale processes, which can not be captured by satellite and are not well
represented by numerical models that do not have eddy resolution, can now be provided by
machine  learning  methods.  A  deep  neural  network  is  used  to  represent  all  subgrid
atmospheric  processes  in  a  climate  model  and  successively  replaces  traditional  subgrid
parameterizations in a global general circulation model [Rasp et al., 2018].
The use of machine learning in models opens new horizons for improving the representation
of environmental phenomena in modeling.
One of the driving mechanisms  for  the  emergence  of  mesoscales  features is the baroclinic
instability, especially in winter [Boccaletti, et al., 2007; Capet et al., 2008; Fox-Kemper and
Ferrari,  2008; Mensa et  al.,  2013; Oiu et  al.,  2014;  Sasaki  et  al.,  2014] .  The baroclinic
instability can be quantified through the term of u’b’, the so called eddy buoyancy flux. 

This work is the first step in the development of a method to reconstruct values of u’b’ from
the large-scale ocean parameters. Further, it can be used as a parameterization of the effect of
sub-grid-scale processes in coarse resolution ocean models.

What was done during this contract.



Pre-processing.     

Data preparation.     

The high-resolution simulation eNATL60 is used as a base for the future Neural Network
model. It is a basin-scale configuration of NEMO from about 6°N up to the polar circle. The
horizontal resolution is 1/60° with ∆x between 0.8 and 1.6 km and 300 vertical levels, hence
it can be assumed to be resolving explicitly all mesoscale processes, which this study focuses
upon. The outputs have an hourly time resolution and 300 vertical levels.
The variables provided by eNATL60 are salinity (S), temperature (T), 3 components of ocean
current velocity and sea surface height. 

The use of eNATL60 started our collaboration with MEOM team at LGGE (Grenoble), 
particularly with Julien Le Sommer and Aurelie Albert. 

The first step of the pre-processing is estimation of the buoyancy b from the eNATL60 data.
b is the function of ocean temperature (T) and salinity (S). 

b=−g
ρ
ρ0

, with ρ=ρ(T , S) (Jackett and McDougall, 1994).

ρ (T , S )=( A∗S+B∗√S+C )∗S+D−ρ0

A=4.8314 x 10⁻⁴
B=(-1.6546 x 10⁻⁶*T+1.0227 x 10⁻⁴)*T-5.72466 x 10⁻³
C=(((5.3875 x 10⁻⁹*T-8.2467 x 10⁻⁷)*T+7.6438 x 10⁻⁵)*T-4.0899 x 10⁻³)*T+
+0.824493
D=( ( ( ( 6.536332 x 10 ⁻⁹*T-1.120083 x 10⁻⁶ )*T+1.001685 x 10⁻⁴)*T -
-9.095290 x 10⁻³ )*T+6.793952 x 10⁻² )*T+999.842594

The second step is the spatial filtering of the eNATL60 outputs and estimated b. The filtering
identifies large scale processes (bf , uf ) removing which gives the scale of target processes at
mesoscale (b', u'). The 
A low-pass spatial filter with Hanning window is used to estimate turbulent part of u and b,
where u = (u,v,w). After several tests the optimal filter parameters are: the window size is 30
grid points and cut-off frequency is about 20km (Fig. 1). The choice of parameters is based
on the spectrum of surface vorticity (made by Aurelie Albert, IGE). 



Figure 1. eNATL60 relative vorticity in the North Atlantic before (black) and after (blue) 
removing of a large-scale part estimated by low-pass spatial Hanning filter

The third step is the spatial and temporal average of the filtered eNATL60 data (bf , uf )  and
its turbulent part (b', u'). As the aim of our work is to create a NN model that can reconstruct
a buoyancy flux from large scale variables the idea of this step is to prepare the target data
and  predictors  data  on  the  coarse  resolution.  The  target  of  this  average  is  the  ORCA
resolution: daily data with 75 vertical levels and spatial resolution 1°.
The target for the NN is u'b', v'b', w'b' (the bar here is the daily average on 1°x1° that is
different from the previous bar used for filter). At first we will focus our analysis on the w'b'.
The lateral components are different from w'b' and have other pythical dynamics and order of
magnitude.
The drivers (or predictors) for the NN are uf , v f , w f , T f , S f  and their gradients. 
At this step we should check the effective resolution (the resolution of scale separation) of
eNATL60  model  and  how  it  works  with  grid  target  (ORCA  resolution  1°). Details  are
presented further.

Choice of regions.        

To simplify the problem, we will avoid coastal regions and regions with islands (limits for
latitude and longitude). The island grid points can cause problems when we will apply ML
approaches for such regions, particularly CNN will fill these points with data that do not have
a physical meaning. 
We will also avoid the possible effect of the bathymetry and stop at a certain depth before
reaching a shallower point (limits for z). The bathymetry can cause the same problems as
islands (see before) at certain depth. Moreover, the bathymetry in high-resolution simulation
is different from the one in low-resolution simulation, that will need a coarsening technique
that is able to preserve the spectrum (horizontal extrapolation, filtering). 



For the first tests we choose two regions: in the Gulf Stream (Fig. 3, 5) (33.5°-39.5°N, 70.6°-
60°W, min depth = 840.646 m) and the Labrador Sea (Fig. 2, 4) (56°-61°N, 55°-50°W, min
depth = 2955.2122 m). 

The Gulf Stream region gives an opportunity to test the CNN approach in the region with
strong meso-scale activity.
The region in the Labrador Sea has a rich seasonal dynamic of water properties at meso-
scales.

Figure 2. Labrador Sea region, ORCA1 grid boxes applied to eNATL60 grid 

Figure 3. Gulf Stream region, ORCA1 grid boxes applied to eNATL60 grid

Figure 4. Zoom of the Labrador Sea region



Figure 5. Zoom of the Gulf Stream region

The region in the middle of the North Atlantic will be added too. It is a region with a week 
eddy activity that allow us to test a model in simplified conditions. 

Comparison of the profiles. 

As mentioned before, at this stage the important step is the comparison of eNATL60 filtered 
and averaged profiles with ORCA1 vertical profiles in regions of study. We started from the 
Labrador Sea region, other regions are still in the data-preparation stage.
The Fig. 6 shows the comparison of temperature vertical profiles averaged over the Labrador 
Sea region and 100 days started from 01/07/2009 between ORCA1 data (blue) and filtered 
and averaged eNATL60 data. We see that both products indicate a presence of the mixed 
layer in first few hundred meters and further thermocline. However, there is an evident 
quantitative difference in the thermocline. To better understand it we provided Power Density
Functions (PDFs) over 100 days (Fig. 7, 8).



Figure 6. Comparison of temperature vertical profile averaged over the Labrador Sea region
and 100 days (started from 01/07/2009) between ORCA1 (blue) and eNATL60 filtered and 
averaged data (red)

Fig. 7 and 8 show the PDFs of temperature vertical profile over 100 days in the Labrador Sea 
region for ORCA1 and eNATL60 respectively. eNATL60 shows a strong restratification 
from the surface to 1000m depth that is not presented in ORCA1. This is an effect of meso-
scale activity that we want to bring in the coarse ocean model. However, this difference 
between the data used for training and data used for further prediction can be crucial. 

These results were presented in form of an oral presentation at the AGU annual meeting in 
December 2019 in San-Francisco, US.

During my collaboration with David Ferreira at the University of Reading (Reading, UK), 
who specialises on the processes at the meso-scale, the method of classification from [Maze 
et al., 2017] was proposed. It will allow to create classes based on the eNATL60 data and 
apply this classes to ORCA1. This comparison will show us at what point the difference 
between vertical profiles of these two products is significant. 



Figure 7. PDF of temperature vertical profile from ORCA1 over 100 days in the Labrador 
Sea region

 

Figure 8. PDF of temperature vertical profile from eNATL60 over 100 days in the Labrador 
Sea region



Conclusion. 

During my Post-Doctoral research in the frame of “Make Our Planet Great Again” grant I (1) 
defined better the project dedicated to the better representation of meso-scale processes in the
ocean models. 
Two collaboration were created: with MEOM team (3) in Grenoble (J. Le Sommer, A. 
Albert), who specialises on the high-resolution ocean modelling, and with University of 
Reading (4) in Reading (UK) (David Ferreira), where I collaborated with specialists on meso-
scale ocean dynamics. 

First results were presented (5) at the AGU annual meeting in San-Francisco (US) in 
December 2019: RECONSTRUCTION OF SUB-GRID-SCALE BUOYANCY FLUXES FROM LARGE-
SCALE OCEAN VARIABLES. 

The method of classification [Maze et al., 2017] was proposed and its application is in 
process (6). We plan to publish obtained results of this classification (7). 
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