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Outline

o The computing challenge for high-resolution modeling
@ End of Dennard scaling
@ Computing transition to machine learning (ML)

e Challenges posed by machine learning
@ Simulation versus understanding
@ Model calibration
@ "Model-free" methods
@ Should ML “learn” what we already know?
@ Limitations of training data

© Project Hermes
@ Metamodels and supermodels
@ Supermodels: learning parameterizations from observations
@ Metamodels: model calibration in idealized and real settings

@ Strategy and timeline ‘
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History of GFDL Computing

HISTORY OF GFDL COMPUTING

Growth of Computational Power with Time
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Courtesy V. Ramaswamy, NOAA/GFDL.

V. Balaji (vbalaji@ipsl.fr) Project Hermés

1 February 2019

4/29



Moore’s Law and End of Dennard scaling

Power and Heat Problems Led to Multiple Cores and
Prevent Further Improvements in Speed
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Source: Ghuck Moore, Data Processing in Exascale-Glass Systems, Apr| 27, 2011. Sakshan Conference on High Speed-Gomputing

Figure courtesy Moore 2011: Data processing in exascale-class
systems.

@ Processor concurrency: Intel Xeon-Phi.
: : - Nuidi B 2@
@ Fine-grained thread concurrency: Nvidia GPU.

V. Balaji (vbalaji@ipsl.fr) Project Hermés 1 February 2019 5/29




Deep Learning

Deep Learning Neural Network

Simple Neural Network
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From Edwards (2018), ACM.
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https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext

Outline

e Challenges posed by machine learning
Simulation versus understanding

Model calibration

"Model-free" methods

Should ML “learn” what we already know?
Limitations of training data
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NGGPS: Next-Generation Global Prediction System

GFDL HIRAM Forecast Model

GFDL Super High Resolution Atmosphere Model
(Super HIRAM)

FV3 dynamical core from GFDL for the next-generation forecast model
(target: 3 km non-hydrostatic in 10 years running at ~ 200 d/d)
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Passing the climate Turing test?

GFDL HIRAM Forecast Model

GFDL Super High Resolution Atmosphere Model
(Super HIRAM)

We may be able to simulate everything in great detail, but do we
understand how it works?
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The model hierarchy

@ Molecular biology uses a hierarchy of “models”: E. Coli, C.
Elegans, fruit fly, mouse, H. Sapiens, ...

@ We have a similar hierarchy: LES, CRM, AOGCM, ESM, ...

@ and a hierarchy of idealized experiments: turbulent flow,
radiative-convective equilibrium, aquaplanet, AMIP, OMIP, control,
historical, ...

@ Community must run common experiments at all levels of the
hierarchy (“idealized MIPs”)...

@ “Verification” (or falsification) of idealized planet Earth? analysis
must isolate underlying mechanisms even in complex models.

Adapted from Held (2005, 2014). Model Hierarchies Workshop,
November 2016 in Princeton.
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https://www.wcrp-climate.org/gc-model-hierarchies-agenda

Model calibration

Model calibration or “tuning” consists of reducing overall model bias

(usually relative to 20th century climatology) by modifying parameters.
In principle, minimizing some cost function:

N
C(p1,p2, ) = Y _ willoi — 69|l
1

@ Usually the p must be chosen within some observed or theoretical
range Pmin < P < Pmax-

@ “Fudge factors” (applying known wrong values) generally frowned
upon (see Shackley et al 1999 discussion on history of “flux
adjustments”. More on that later...)

@ The choice of w; is part of the lab’s “culture”!

@ The choice of d)j?bs is also troublesome:

e overlap between “tuning” metrics and “evaluation” metrics.
e “Over-tuning”: remember “reality” is but one ens ember @
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Objective methods of tuning
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optimization. See also Zamboni et al.
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Model-free prediction vs model augmentation

From Pathak et al, PRL (2018), Model-Free Prediction of Large
Spatiotemporally Chaotic Systems from Data: A Reservoir Computing

Approach w8 QE

Movie: Pathak’s flame front in Quanta.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.024102
https://www.quantamagazine.org/machine-learnings-amazing-ability-to-predict-chaos-20180418/

Making ML respect known physical constraints

See momentum conservation discussion in Bolton and Zanna (2018),
Applications of Deep Learning to Ocean Data Inference and Sub-Grid

Parameterisation.

Determine basis
of invariants

Transform data
given number of
times
Train algorithm Train algorithm on

on invariant transformed data
basis

Evaluate model
performance on
transformed
validation data

From Ling et al, JCP (2016), Machine learning strate%‘systew
with invariance properties -
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https://www-sciencedirect-com/science/article/pii/S0021999116301309

Distilling Free-Form Natural Laws from Experimental
Data

Physical System Schematic Experimental Data Inferred Laws
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From Schmidt and Lipson, Science, 2009. My little hommage Gaitan
et al (2016), Can we obtain viable alternatives to Manigi egu 1ation

using genetic programming? Eureqa software availab rlicens
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http://science.sciencemag.org/content/324/5923/81
http://www.sciedupress.com/journal/index.php/air/article/view/9305
http://www.sciedupress.com/journal/index.php/air/article/view/9305

Navier-Stokes from data
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http://advances.sciencemag.org/content/3/4/e1602614

Limitations of training data

(a) Trained on each climate separately (b) Trained on combined climates

Original scheme
— — — Random forest

Fractional change (%K")

Fractional change (%K‘1)

Latitude (degrees) Latitude (degrees)

From O’Gorman and Dwyer, JAMES, 2018. Limitatio faining on
short non-stationary time series. % |
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001351

Error patterns associated with stationarity assumption

August Daily Max Temperatures
for a point in Oklahoma

HI RES (25km) GCM HI RES (25km) GCM
1979-2008 2086-2095 approx. +7C
mean warming

T T T
(2.5C histogram bins)

Errors can be traced with warming outside the temperature distribution
of the training period. Caution needed at distribution tgilg eextreme, ®:
events”). Dixon et al (2016). R
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Where models and data are both weak...
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Fig 1 from Valdes (2011). GCMs are unable to simulam
Paleocene-Eocene climate of 55 My ago.
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Outline

© Project Hermes
@ Metamodels and supermodels
@ Supermodels: learning parameterizations from observations
@ Metamodels: model calibration in idealized and real settings

@ Strategy and timeline
yaner: B
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Questions: metamodels and supermodels

@ Supermodels: some components replaced by learning agents.
Metamodels: low-dimensional emulators, “fast approximate
models”.

@ Fundamental questions still unanswered:

Are model-free methods useful?

How do we derive the invariant basis of a complex system?

Can we use ML to derive the functional form of a slow manifold?
Can we derive a useful model hierarchy?

Can this metamodel be used for parameter uncertainty exploration?
How much physical knowledge (e.g conservation laws) must be
embedded in the ML? What if the embedded knowledge is
incorrect? (“It's not what you don’t know, it's what you know for sure
that just ain’t so”, Mark Twain never said.)

What happens to supermodels as the features of the training data

evolve?
‘\?f\l\‘w‘\‘ LES :4 Q‘f‘
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Learn parameterizations from observations

(Courtesy: D. Randall, CSU;

CMMAP).

@ Global-scale CRMs (e.g 7 km simulation on the left) and even
super-parameterization using embedded cloud models (right)
remain prohibitively expensive.

@ Can we learn the statistical aggregate of small scales? See
Schneider et al 2017, Gentine et al (2018), O’Go%nd Dwyer
(2018), Bolton and Zanna (2018), ...
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(Courtesy: S-J Lin, NOAA/GFDL).
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351

Learning sub-gridscale turbulence

Fig 1 from Bolton and Zanna (2018), in review for JAI\E@ ™
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Caltech/MIT Earth Machine
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html

Lorenz 96, a nice abstraction
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A nice abstraction of a system with fast and slow modes, whose
coupling strength can be varied... maybe too interestiw‘qw 2B @
metastability issues in Schneider et al, GRL (2017). rastaier
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https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL076101

Lorenz96 in perfect model setting
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html

Project Hermeés: Strategy

@ Project Hermes will study learning methods for metamodels and
supermodels, for atmosphere and ocean, across a hierarchy of
models (e.g 1D and 3D, idealized, LES, GCM, ...)

@ Project Hermes will aim to foster collaboration in the emerging
field of Climate/ML: between the ML and climate communities,
theoretical and applied science, between institutions in EU/US/...

@ Project Hermeés will aim to build a community of interdiscplinary
scientists equally at home in machine learning and Earth System
science.

@ Project Hermes will aim to be open-minded and opportunistic: this
is a nascent field and there will be unexpected twists and turns!

@ All work will be shared with the community via articles in
open-access journals, open-source software, open data. No
commercial or proprietary interests. Articles will list LSCE
affiliation first and acknowledge MOPGA funding 3@ 1+ 2 @¢

V. Balaji (vbalaji@ipsl.fr) Project Hermés 1 February 2019 27/29



Collaborations beginning under Project Hermés

Initial presentations:

@ Presentation of the ML challenge to the community: IPSL (Dec
2018), LSCE (Jan 2019).

Beginning collaborations:

@ Extension of Bolton-Zanna approach using high-resolution ocean
models

@ In collaboration with LOCEAN, Uni Grenoble, Oxford, Princeton
e MOPGA postdoc (LSCE) under recruitment.
@ Application of ML to model calibration

e In collaboration with LMD, Univ Exeter, Ecole Normale Supérieure,
ANR High Tunes project.
e Doctoral student (ENS) under recruitment.

@ Detection of features (e.g tropical cyclones) in high-resolution
climate data.

e In collaboration with IPSL. :;u:\xcc.;‘: 2Q:
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Proposed timeline

@ Year 1:
e Recruitment for subprojects (see above).
e Monthly Journal Club starting Feb 2019.
e Presentation of the Climate/ML challenge to the community: IPSL
(Dec 2018), LSCE (Jan 2019), SAMA IA-Climat (Feb 2019).
e Invited presentation at LEFE/MANU Journée Thematique a Rennes
(Feb 2019)
o Invited keynote presentation at EGU Assembly Vienna (April 2019).
o Articles in preparation:
@ Metamodels and supermodels: ideas and challenges from machine
learning in Earth System Science.
@ The biology analogy: will in silico science become like in vitro?
@ Year 3:
e Demonstration of supermodeling approach in at least one aspect of
IPSL model.
e Demonstration of ML application in calibration of IPSL model.
@ Year 5:
e Hybrid (ML/physics-based) model in production. ”F‘*\‘\”"‘* E@i
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